Source code for CyLP.py.modeling.CyLPModel

'''
    Module provide a facility to model a linear program.
    Although the current usage is to pass the resulting LP to CLP
    to solve it is independant of the solver.

    .. _modeling-usage:

    **Usage (single dimension, using CyLPModel indirectly)**

    >>> import numpy as np
    >>> from CyLP.cy import CyClpSimplex
    >>> from CyLP.py.modeling.CyLPModel import CyLPArray
    >>>
    >>> s = CyClpSimplex()
    >>>
    >>> # Add variables
    >>> x = s.addVariable('x', 3)
    >>> y = s.addVariable('y', 2)
    >>>
    >>> # Create coefficients and bounds
    >>> A = np.matrix([[1., 2., 0],[1., 0, 1.]])
    >>> B = np.matrix([[1., 0, 0], [0, 0, 1.]])
    >>> D = np.matrix([[1., 2.],[0, 1]])
    >>> a = CyLPArray([5, 2.5])
    >>> b = CyLPArray([4.2, 3])
    >>> x_u= CyLPArray([2., 3.5])
    >>>
    >>> # Add constraints
    >>> s += A * x <= a
    >>> s += 2 <= B * x + D * y <= b
    >>> s += y >= 0
    >>> s += 1.1 <= x[1:3] <= x_u
    >>>
    >>> # Set the objective function
    >>> c = CyLPArray([1., -2., 3.])
    >>> s.objective = c * x + 2 * y.sum()
    >>>
    >>> # Solve using primal Simplex
    >>> s.primal()
    'optimal'
    >>> s.primalVariableSolution['x']
    array([ 0.2,  2. ,  1.1])
    >>> s.primalVariableSolution['y']
    array([ 0. ,  0.9])
    >>> s += x[2] + y[1] >= 2.1
    >>> s.primal()
    'optimal'
    >>> s.primalVariableSolution['x']
    array([ 0. ,  2. ,  1.1])
    >>> s.primalVariableSolution['y']
    array([ 0.,  1.])

    **Usage (single dimension, using CyLPModel directly, depending on the
      size could be faster than the indirect approach)**

    >>> import numpy as np
    >>> from CyLP.cy import CyClpSimplex
    >>> from CyLP.py.modeling.CyLPModel import CyLPModel, CyLPArray
    >>>
    >>> model = CyLPModel()
    >>>
    >>> # Add variables
    >>> x = model.addVariable('x', 3)
    >>> y = model.addVariable('y', 2)
    >>>
    >>> # Create coefficients and bounds
    >>> A = np.matrix([[1., 2., 0],[1., 0, 1.]])
    >>> B = np.matrix([[1., 0, 0], [0, 0, 1.]])
    >>> D = np.matrix([[1., 2.],[0, 1]])
    >>> a = CyLPArray([5, 2.5])
    >>> b = CyLPArray([4.2, 3])
    >>> x_u= CyLPArray([2., 3.5])
    >>>
    >>> # Add constraints
    >>> model += A * x <= a
    >>> model += 2 <= B * x + D * y <= b
    >>> model += y >= 0
    >>> model += 1.1 <= x[1:3] <= x_u
    >>>
    >>> # Set the objective function
    >>> c = CyLPArray([1., -2., 3.])
    >>> model.objective = c * x + 2 * y.sum()
    >>>
    >>> # Create a CyClpSimplex instance from the model
    >>> s = CyClpSimplex(model)
    >>>
    >>> # Solve using primal Simplex
    >>> s.primal()
    'optimal'
    >>> s.primalVariableSolution['x']
    array([ 0.2,  2. ,  1.1])
    >>> s.primalVariableSolution['y']
    array([ 0. ,  0.9])
    >>> s += x[2] + y[1] >= 2.1
    >>> s.primal()
    'optimal'
    >>> s.primalVariableSolution['x']
    array([ 0. ,  2. ,  1.1])
    >>> s.primalVariableSolution['y']
    array([ 0.,  1.])

    **Usage (multi-dimensions, using CyLPModel indirectly)**

    >>> from CyLP.cy import CyClpSimplex
    >>> from CyLP.py.modeling.CyLPModel import CyLPArray
    >>> s = CyClpSimplex()
    >>> x = s.addVariable('x', (5, 3, 6))
    >>> s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5
    >>> s += 0 <= x <= 1
    >>> c = CyLPArray(range(18))
    >>> s.objective = c * x[2, :, :] + c * x[0, :, :]
    >>> s.primal()
    'optimal'
    >>> sol = s.primalVariableSolution['x']
    >>> abs(sol[0, 1, 0] - 1) <= 10**-6
    True
    >>> abs(sol[2, 0, 3] - 1) <= 10**-6
    True

'''

from itertools import product
from copy import deepcopy
from operator import mul
import numpy as np
import resource
from scipy import sparse
from scipy.sparse import identity, lil_matrix
from CyLP.py.utils.util import Ind, getMultiDimMatrixIndex, getTupleIndex

NUMBERS = (int, float, long, np.int64, np.int32, np.double)
def isNumber(n):
    return (isinstance(n, NUMBERS) or
            (isinstance(n, CyLPArray) and n.shape == ()))

# Increase max stack size from 8MB to 512MB
#resource.setrlimit(resource.RLIMIT_STACK, (2**5,-1))
#sys.setrecursionlimit(10**6)

#from CyLP.py.utils.sparseUtil import sparseConcat
def I(n):
    '''
    Return a sparse identity matrix of size *n*
    '''
    if n <= 0:
        return None
    #return csc_matrixPlus(sparse.eye(n, n))
    return identity(n).tocsr()

def identitySub(var):
    '''
    Return a sparse row sub-matrix of the identity matrix
    for ``var``.
    '''
    n = var.dim
    if var.parent != None:
        n = var.parent.dim
    if var.dim == 1:
        m = lil_matrix((1, n))
        m[0, var.indices[0]] = 1
        return m
    return I(n)[var.indices, :]

class CyLPExpr:
    operators = ('>=', '<=', '==', '+', '-', '*', 'u-', 'sum')

    def __init__(self, opr='', left='', right=''):
        self.opr = opr
        self.left = left
        self.right = right
        self.expr = self
        #self.variables = []

    def __hash__(self):
        return id(self)

    def __repr__(self):
        s = '%s %s %s' % (self.left, self.right, self.opr)
        return s

    def __le__(self, other):
        v = CyLPExpr(opr="<=", right=other, left=self.expr)
        self.expr = v
        return v

    def __ge__(self, other):
        v = CyLPExpr(opr=">=", right=other, left=self.expr)
        self.expr = v
        return v

    def __eq__(self, other):
        # Check if both sides are CyLPVar, in which case a pythonic
        # comparison is meant (for dictionary keys,...)
        if (other == None):
            return False
        if isinstance(self, CyLPVar) and isinstance(other, CyLPVar):
            return id(self) == id(other)
            #return (str(self) == str(other))
        v = CyLPExpr(opr="==", right=other, left=self.expr)
        self.expr = v
        return v

    def __rmul__(self, other):
        v = CyLPExpr(opr="*", left=other, right=self)
        v.expr = v
        self.expr = v
        return v

    def __rsub__(self, other):
        v = CyLPExpr(opr="-", left=other, right=self)
        v.expr = v
        self.expr = v
        return v

    def __radd__(self, other):
        v = CyLPExpr(opr="+", left=other, right=self)
        v.expr = v
        self.expr = v
        return v

    def __neg__(self):
        v = CyLPExpr(opr="u-", right=self)
        v.expr = v
        self.expr = v
        return v

    def getPostfix(self):
        if isinstance(self, CyLPVar):
            return [self]
        left = [self.left]
        right = [self.right]
        if isinstance(self.left, CyLPExpr):
            left = self.left.getPostfix()
        if isinstance(self.right, CyLPExpr):
            right = self.right.getPostfix()

        return left + right + [self.opr]

    def evaluate(self, name=''):
        '''
        Evaluates an expression in the postfix form
        '''
        #FIXME: sometimes calling this twice is different than running it once
        tokens = self.getPostfix()
        operands = []

        cons = CyLPConstraint(name)

        for token in tokens:
            # If an operand found
            if type(token) != str or token not in CyLPExpr.operators:
                operands.append(token)
                if (isinstance(token, CyLPVar)):
                    varToBeAdded = token
                    if not varToBeAdded in cons.variables:
                        cons.variables.append(varToBeAdded)

            # Else we know what to do with an operator
            else:
                if token == 'u-':
                    right = operands.pop()
                    cons.perform(token, right=right)
                    operands.append(CyLPExpr(token, right=right))
                else:
                    right = operands.pop()
                    left = operands.pop()
                    cons.perform(token, left, right)
                    operands.append(CyLPExpr(token, left, right))

        # If something remains in the *operands* list, it means
        # that we have a single CyLPVar object on a line with no
        # operators operating on it. Check this situation and
        # add a 1 vector as its coefficient
        if len(operands) == 1 and isinstance(operands[0], CyLPVar):
            var = operands[0]
            cons.varCoefs[var] = identitySub(var) #np.ones(var.dim)

        # Reset variables for future constraints
        for var in cons.varCoefs.keys():
            var.expr = var

        return cons


class CyLPConstraint:
    gid = 0
    def __init__(self, name=''):
        self.varNames = []
        self.parentVarDims = {}
        self.varCoefs = {}
        self.lower = None
        self.upper = None
        self.nRows = None
        self.isRange = True
        self.variables = []
        if not name:
            CyLPConstraint.gid += 1
            name = 'R_%d' % CyLPConstraint.gid
        self.name = name

    def __repr__(self):
        s = '\n'
        s += 'constraint %s:\n' % self.name
        s += 'variable names:\n'
        s += str(self.varNames) + '\n'
        s += 'coefficients:\n'
        s += str(self.varCoefs) + '\n'
        s += 'lower = %s\n' % str(self.lower)
        s += 'upper = %s\n' % str(self.upper)
        if self.isRange:
            s += 'Constraint is a range\n'
        else:
            s += 'normal Constarint\n'
        return s

    def mul(self, expr, coef):
        '''
        Recursively multiplies all variable coefficients in *expr* by *coef*
        '''
        if isinstance(expr, CyLPVar):
            self.varCoefs[expr] *= coef
            return
        if isinstance(expr, CyLPExpr):
            if expr.left == None:
                return
            self.mul(expr.right, coef)
            self.mul(expr.left, coef)


    def perform(self, opr, left=None, right=None):
        if isinstance(right, CyLPVar):
            if right.dim == 0:
                return
            if right.name not in self.varNames:
                self.varNames.append(right.name)
                self.parentVarDims[right.name] = right.parentDim
            if opr == 'u-':
                #ones = -CyLPArray(np.ones(right.dim))
                #self.nRows = right.dim
                #self.varCoefs[right] = ones
                self.varCoefs[right] = -identitySub(right)
                self.nRows = len(right.indices)
                self.isRange = False
            elif opr == 'sum':
                n = right.dim
                if right.parent != None:
                    n = right.parent.dim
                self.varCoefs[right] = sparse.lil_matrix((1, n))
                self.varCoefs[right][0, right.indices] = np.ones(len(right.indices))
                self.nRows = 1
                self.isRange = False
            else:
                #self.varNames.append(right.name)
                #self.parentVarDims[right.name] = right.parentDim
                dim = right.dim

                if opr == "*":  # Setting the coefficients
                    # Ignore a term if its coef is None
                    if isNumber(left):
                        if self.nRows and self.nRows != 1:
                            raise Exception("Expected 1-dimensional" \
                                            " coefficient")
                        #self.nRows = 1
                        #coef = CyLPArray(left * np.ones(dim))
                        coef = left * identitySub(right)
                        self.nRows = len(right.indices)
                    else:
                        if left == None:
                            return
                        if right.dim != left.shape[-1]:
                            raise Exception("Coefficient:\n%s\n has %d" \
                                            " columns expected %d"
                                        % (left, left.shape[1], right.dim))
                        if len(left.shape) == 1:  # Array
                            nr = 1
                        else:
                            nr = left.shape[0]
                            #nr = len(left)
                        if self.nRows and self.nRows != nr:
                            raise Exception("Coefficient:\n%s\n has %d rows" \
                                            " expected %d"
                                        % (left, left.shape[0], self.nRows))
                        self.nRows = nr
                        if right.parent == None:
                            coef = deepcopy(left)
                        else:
                            coef = sparse.lil_matrix((nr, right.parent.dim))
                            coef[:, right.indices] = left

                    self.varCoefs[right] = coef
                    self.isRange = False

                if opr == '+' or opr == '-':
                    # No coefs for left op
                    self.isRange = False
                    if isinstance(left, CyLPVar):
                        self.varCoefs[left] = identitySub(left)
                        self.nRows = len(left.indices)
                        if left.name not in self.varNames:
                            self.varNames.append(left.name)
                            self.parentVarDims[left.name] = left.parentDim

                    # No coefs for right op
                    if isinstance(right, CyLPVar):
                        if right in self.varCoefs.keys():
                            self.varCoefs[right] *= -1
                        else:
                            coef = identitySub(right)
                            if opr == '-':
                                coef *= -1
                            self.varCoefs[right] = coef
                            self.nRows = len(right.indices)
                            #if self.nRows == 0:
                            #    self.nRows = 1
                            #    coef = CyLPArray(np.ones(right.dim))
                            #elif self.nRows == 1:
                            #    coef = CyLPArray(np.ones(1))
                            #else:
                            #    coef = np.matrix(np.eye(self.nRows))

                            #if opr == '-':
                            #    coef *= -1
                            #self.varCoefs[right] = coef
                            if right.name not in self.varNames:
                                self.varNames.append(right.name)
                                self.parentVarDims[right.name] = \
                                                            right.parentDim
        # check if no coef for left
        if left.__class__ == CyLPVar and (opr == '-' or opr == '+'):
            if left.dim == 0 :
                return
            self.isRange = False
            #ones = CyLPArray(np.ones(left.dim))
            #self.varCoefs[left] = ones
            #self.nRows = 1
            self.varCoefs[left] = identitySub(left)
            self.nRows = len(left.indices)
            if left.name not in self.varNames:
                self.varNames.append(left.name)
                self.parentVarDims[left.name] = left.parentDim

        # Coef already set for the right operand
        if right.__class__ == CyLPExpr:
            if opr == '-':
                # The expression on the right is in the form (left opr right)
                # so the key to the coef in self.varCoefs is right.right i.e.
                # the CyLPVar on the right
                #if right.right.dim == 0:
                #    return
                self.isRange = False
                self.mul(right, -1)
                #self.varCoefs[right.right] *= -1
            if opr == '*' and isNumber(left):
                self.mul(right, left)


        if opr in ('<=', '>=', '=='):
            if isinstance(left, CyLPExpr) and not isinstance(right,
                                                              CyLPExpr):
                bound = right
            elif isinstance(right, CyLPExpr) and not isinstance(left,
                                                                CyLPExpr):
                bound = left
            else:
                raise Exception('At least one side of a comparison sign' \
                                'should be constant.')

            # FIXME: check this: I suppose never runs
            if self.isRange:
                var = self.variables[0]
                self.nRows = var.parentDim
                dim = var.parentDim
            #if not self.nRows:
                #self.nRows = left.parentDim
                #dim = left.parentDim
            else:
#                # FIXME: Think of the correct way to check bound dimensions
#                if (not isinstance(right, (float, long, int)) and
#                            right.shape[0] != self.nRows):
#                    #raise Exception('Bound dim: %d, expected dim: %d '
#                    #                % (right.shape[0], self.nRows))
#                    pass
                dim = self.nRows
#
            if isNumber(right):
                bound = CyLPArray(right * np.ones(dim))

            if self.isRange:
                if ((opr in ('>=', '==') and isinstance(left, CyLPExpr)) or
                    (opr in ('<=', '==') and isinstance(right, CyLPExpr))):
                    if var.parent:
                        var.parent.lower[var.indices] = bound
                    else:
                        var.lower[var.indices] = bound

                if ((opr in ('<=', '==') and isinstance(left, CyLPExpr)) or
                    (opr in ('>=', '==') and isinstance(right, CyLPExpr))):
                    if var.parent:
                        var.parent.upper[var.indices] = bound
                    else:
                        var.upper[var.indices] = bound

            else:
                if ((opr in ('>=', '==') and isinstance(left, CyLPExpr)) or
                    (opr in ('<=', '==') and isinstance(right, CyLPExpr))):
                    self.lower = bound
                    if self.upper == None:
                        self.upper = getCoinInfinity() * np.ones(len(bound))
                if ((opr in ('<=', '==') and isinstance(left, CyLPExpr)) or
                    (opr in ('>=', '==') and isinstance(right, CyLPExpr))):
                    self.upper = bound
                    if self.lower == None:
                        self.lower = -getCoinInfinity() * np.ones(len(bound))


[docs]class CyLPVar(CyLPExpr): ''' Contains variable information such as its name, dimension, bounds, and whether or not it is an integer. We don't creat instances directly but rather use :py:func:`CyLPModel.addVariable` to create one. See the :ref:`modeling example <modeling-usage>`. ''' def __init__(self, name, dim, isInt=False, fromInd=None, toInd=None): self.name = name self.dims = None if isinstance(dim, tuple): self.setDims(dim) self.dim = dim = reduce(mul, dim) self.parentDim = dim else: self.dim = dim self.parentDim = dim self.parent = None self.isInt = isInt self.expr = self self.lower = -getCoinInfinity() * np.ones(dim) self.upper = getCoinInfinity() * np.ones(dim) self.indices = range(dim) self.fromInd = self.toInd = None if fromInd and toInd: self.indices = range(fromInd, toInd) self.formInd = fromInd self.toInd = toInd def __repr__(self): s = self.name if self.fromInd and self.toInd: s += '[%d:%d]' % (self.fromInd, self.toInd) elif self.parent != None and len(self.indices) == 1: s += '[%d]' % self.indices return s def setDims(self, ds): self.dims = ds def __getitem__(self, key): if type(key) == int: newObj = CyLPVar(self.name, 1) newObj.indices = np.array([key], np.int32) newObj.parentDim = self.dim newObj.parent = self newObj.dim = 1 elif type(key) == slice: newObj_fromInd = key.start if key.stop > self.dim: newObj_toInd = self.dim else: newObj_toInd = key.stop newObj = CyLPVar(self.name, newObj_toInd - newObj_fromInd) newObj.parentDim = self.dim newObj.parent = self newObj.fromInd = newObj_fromInd newObj.toInd = newObj_toInd newObj.indices = np.arange(newObj.fromInd, newObj.toInd, dtype='int32') # Save parentDim for future use newObj.dim = len(newObj.indices) elif isinstance(key, (np.ndarray, list)): newObj = CyLPVar(self.name, len(key)) newObj.parentDim = self.dim newObj.parent = self newObj.fromInd = None newObj.toInd = None newObj.indices = np.array(key) newObj.dim = len(newObj.indices) elif isinstance(key, tuple): inds = [] n = range(len(key)) for i in n: k = key[i] if isinstance(k, int): inds.append(Ind(slice(k, k+1), self.dims[i])) else: inds.append(Ind(k, self.dims[i])) newObj = self.__getitem__(getMultiDimMatrixIndex(inds)) return newObj def sum(self): v = CyLPExpr(opr="sum", right=self) v.expr = v self.expr = v return v
[docs]class CyLPArray(np.ndarray): ''' It is a tweaked Numpy array. It allows user to define objects comparability to an array. If we have an instance of ``CyLPVar`` called ``x`` and a numpy array ``b``, then ``b >= x`` returns an array of the same dimension as ``b`` with all elements equal to ``False``, which has no sense at all. On the constrary ``CyLPArray`` will return ``NotImplemented`` if it doesn't know how to compare. This is particularly helpful when we define LP constraints. See the :ref:`modeling example <modeling-usage>`. ''' def __new__(cls, input_array, info=None): # Input array is an already formed ndarray instance # We first cast to be our class type obj = np.asarray(input_array).view(cls) # add the new attribute to the created instance obj.__le__ = CyLPArray.__le__ obj.__ge__ = CyLPArray.__ge__ return obj def __le__(self, other): if (issubclass(other.__class__, CyLPExpr)): return NotImplemented return np.ndarray.__le__(self, other) def __ge__(self, other): if (issubclass(other.__class__, CyLPExpr)): return NotImplemented return np.ndarray.__ge__(self, other) def __mul__(self, other): if (issubclass(other.__class__, CyLPExpr)): return NotImplemented return np.ndarray.__mul__(self, other) def __rmul__(self, other): if (issubclass(other.__class__, CyLPExpr)): return NotImplemented return np.ndarray.__rmul__(self, other) def __add__(self, other): if (issubclass(other.__class__, CyLPExpr)): return NotImplemented return np.ndarray.__add__(self, other) def __radd__(self, other): if (issubclass(other.__class__, CyLPExpr)): return NotImplemented return np.ndarray.__radd__(self, other) def __rsub__(self, other): if (issubclass(other.__class__, CyLPExpr)): return NotImplemented return np.ndarray.__rsub__(self, other) def __sub__(self, other): if (issubclass(other.__class__, CyLPExpr)): return NotImplemented return np.ndarray.__sub__(self, other)
[docs]class IndexFactory: ''' A small class that keeps track of the indices of variables and constraints that you are adding to a problem gradually. **Usage** >>> import numpy as np >>> from CyLP.py.modeling.CyLPModel import IndexFactory >>> i = IndexFactory() >>> i.addVar('x', 10) >>> i.addVar('y', 5) >>> i.hasVar('x') True >>> (i.varIndex['y'] == np.arange(10, 15)).all() True >>> i.addConst('Manpower', 4) >>> i.addConst('Gold', 10) >>> (i.constIndex['Manpower'] == np.arange(4)).all() True >>> (i.constIndex['Gold'] == np.arange(4, 14)).all() True ''' def __init__(self): self.varIndex = {} self.constIndex = {} self.currentVarIndex = 0 self.currentConstIndex = 0 def addVar(self, varName, numberOfVars): if numberOfVars == 0: return if not varName: raise Exception('You must specify a name for a variable.') if varName in self.varIndex.keys(): print 'Variable already exists.' #self.varIndex[varName] += range(self.currentVarIndex, # self.currentVarIndex + # numberOfVars) else: self.varIndex[varName] = np.arange(self.currentVarIndex, self.currentVarIndex + numberOfVars, dtype='int32') self.currentVarIndex += numberOfVars def removeVar(self, name): if not self.hasVar(name): raise Exception('Variable "%s" does not exist.' % name) nVars = len(self.varIndex[name]) start = self.varIndex[name][0] del self.varIndex[name] for varName in self.varIndex.keys(): inds = self.varIndex[varName] if inds[0] > start: self.varIndex[varName] = inds - nVars * np.ones(len(inds), np.int32) def hasVar(self, varName): return varName in self.varIndex.keys() def hasConst(self, constName): return constName in self.constIndex def getLastVarIndex(self): return self.currentVarIndex - 1 def addConst(self, constName, numberOfConsts): if numberOfConsts == 0: return if not constName: raise Exception('You must specify a name for a constraint.') if self.hasConst(constName): print 'Constraint already exists: %s' % constName #self.constIndex[constName] += range(self.currentConstIndex, # self.currentConstIndex + numberOfConsts) else: self.constIndex[constName] = np.arange(self.currentConstIndex, self.currentConstIndex + numberOfConsts, dtype='int32') self.currentConstIndex += numberOfConsts def removeConst(self, name): if not self.hasConst(name): raise Exception('Constraint "%s" does not exist.' % name) nCons = len(self.constIndex[name]) start = self.constIndex[name][0] del self.constIndex[name] for constName in self.constIndex.keys(): inds = self.constIndex[constName] if inds[0] > start: self.constIndex[constName] = inds - nCons * np.ones(len(inds), np.int32) def getLastConstIndex(self): return self.currentConstIndex - 1 def __repr__(self): varind = self.varIndex cind = self.constIndex s = "variables : \n" for vname, rg in varind.items(): s += '%s : %s\n' % (vname.rjust(15), str(rg)) s += '\n' s += "constraints : \n" for cname, rg in cind.items(): s += '%s : %s\n' % (cname.rjust(15), str(rg)) return s
[docs] def reverseVarSearch(self, ind): ''' Take an index and return the corresponding variable name. ''' inds = self.varIndex for key in inds.keys(): if ind in inds[key]: i = np.where(inds[key]==ind)[0][0] return key, i return -1, -1
from CyLP.py.utils.sparseUtil import sparseConcat, csr_matrixPlus, csc_matrixPlus
[docs]class CyLPModel(object): ''' Hold all the necessary information to create a linear program, i.e. variables, constraints, and the objective function. See the :ref:`modeling example <modeling-usage>`. ''' def __init__(self): self.variables = [] self.constraints = [] self.objective_ = None self.inds = IndexFactory() self.nVars = 0 self.varNames = [] self.nCons = 0 self.pvdims = {}
[docs] def addVariable(self, name, dim, isInt=False): ''' Create a new instance of :py:class:`CyLPVar` using the given arguments and add it to current model's variable list. ''' if dim == 0: return var = CyLPVar(name, dim, isInt) self.variables.append(var) #If mulidim, correct dim if isinstance(dim, tuple): dim = reduce(mul, dim) if not self.inds.hasVar(var.name): self.inds.addVar(var.name, dim) self.nVars += dim self.varNames.append(var.name) self.pvdims[var.name] = dim if var.dims: var.mpsNames = [var.name + '_' + '_'.join(x) for x in \ product(*[map(str, range(i)) for i in var.dims])] else: var.mpsNames = ['%s_%s' % (var.name, i) for i in xrange(var.dim)] o = self.objective_ if isinstance(o, np.ndarray): o = np.concatenate((o, np.zeros(dim)), axis=0) else: o = sparseConcat(o, csr_matrixPlus(np.zeros(dim)), 'h') self.objective_ = csr_matrixPlus(o) else: raise Exception('Varaible %s already exists.' % var.name) return var
def removeVariable(self, name): ''' Remove a variable named ``name`` from the model ''' if not self.inds.hasVar(name): raise Exception('Variable "%s" does not exist.' % name) self.nVars -= self.pvdims[name] start = self.inds.varIndex[name][0] end = start + self.pvdims[name] o = self.objective_ if isinstance(o, np.ndarray): o = np.concatenate((o[:start], o[end:]), axis=0) else: if end == o.shape[1]: if start == 0: print 'Problem empty.' else: o = o[0, :start] elif start == 0: o = o[0, end:] else: o = sparseConcat(o[0, :start], o[0, end:], how='h') self.objective_ = csr_matrixPlus(o) del self.pvdims[name] self.varNames.remove(name) self.inds.removeVar(name) for i in range(len(self.variables)): var = self.variables[i] if var.name == name: del self.variables[i] break #Removing the variable from the constraints cons = self.constraints for c in cons: if name in c.varNames: c.varNames.remove(name) del c.parentVarDims[name] for v in c.varCoefs.keys(): if v.name == name: del c.varCoefs[v] for c in cons[:]: self.inds if not c.varCoefs: self.removeConstraint(c.name) def getVarByName(self, varName): ''' Return a variable with name ``varName``. ''' for var in self.variables: if var.name == varName: return var return None def makeIndexFactory(self): self.allVarNames = [] varNameDict = {} #copy of allVarNames in dictionary form, for efficiency self.allParentVarDims = {} self.nRows = 0 for c in self.constraints: # Make sure to add variables in the same order they were # added to CyLPModel for var in self.variables: for vname in c.varNames: if vname == var.name and vname not in varNameDict: self.allVarNames += [vname] varNameDict[vname] = True self.allParentVarDims.update(c.parentVarDims) self.nRows += c.nRows @property def objective(self): return self.objective_ @objective.setter def objective(self, obj): if isinstance(obj, CyLPExpr): self.objective_ = obj.evaluate() obj = None #for varName in self.allVarNames: for varName in self.varNames: v_coef = self.generateVarObjCoef(varName) obj = sparseConcat(obj, v_coef, how='h') self.objective_ = obj def __iadd__(self, cons): ''' Call :meth:`addConstraint`. The only difference is that you cannot specify a name for your constraint. ''' self.addConstraint(cons) return self
[docs] def addConstraint(self, cons, consName=''): ''' Add constraint ``cons`` to the ``CyLPModel``. Argument ``cons`` must be an expresion made using instances of :py:class:`CyLPVar`, :py:class:`CyLPArray`, Numpy matrices, or sparse matrices. It can use normal operators such as ``>=``, ``<=``, ``==``, ``+``, ``-``, ``*``. See the :ref:`modeling example <modeling-usage>`. ''' c = cons.evaluate(consName) if not c.isRange: self.constraints.append(c) if c.name: self.inds.addConst(c.name, c.nRows) self.nCons += c.nRows c.mpsNames = [] for i in xrange(c.nRows): c.mpsNames.append('%s_%s' % (c.name, str(i))) #self.makeMatrices() return c
def removeConstraint(self, name): ''' Remove constraint called ``name`` and return its CLP indices back for actual removal. ''' if not self.inds.hasConst(name): raise Exception('Constraint "%s" does not exist.' % name) for i in range(len(self.constraints)): if self.constraints[i].name == name: con = self.constraints[i] break self.nCons -= con.nRows del self.constraints[i] indsOfConstriantsToBeRemoved = self.inds.constIndex[name] self.inds.removeConst(name) return indsOfConstriantsToBeRemoved def generateVarObjCoef(self, varName): #dim = self.allParentVarDims[varName] dim = self.pvdims[varName] coef = csr_matrixPlus((1, dim)) obj = self.objective_ keys = [k for k in obj.varCoefs.keys() if k.name == varName] for var in keys: coef = coef + obj.varCoefs[var] return coef def generateVarMatrix(self, varName): ''' Create the coefficient matrix for a variable named varName. Return a csr_matrixPlus. ''' #dim = self.allParentVarDims[varName] dim = self.pvdims[varName] mainCoef = None for c in self.constraints: coef = sparse.coo_matrix((c.nRows, dim)) keys = [k for k in c.varCoefs.keys() if k.name == varName] for var in keys: coef = coef + c.varCoefs[var] mainCoef = sparseConcat(mainCoef, coef, 'v') return mainCoef def makeMatrices(self): ''' Makes coef matrix and rhs vector from CyLPConstraints in self.constraints ''' #if len(self.constraints) == 0: # return self.makeIndexFactory() #self.getVarBounds() # Create the aggregated coef matrix masterCoefMat = None masterCoefMat = None if self.nCons > 0: for varName in self.varNames:# self.pvdims.keys():#self.allVarNames: vmat = self.generateVarMatrix(varName) if vmat == None: vmat = csc_matrixPlus((self.nCons, self.pvdims[varName])) masterCoefMat = sparseConcat(masterCoefMat, vmat, 'h') # Create bound vectors c_lower = np.array([]) c_upper = np.array([]) for c in self.constraints: if not c.isRange: c_lower = np.concatenate((c_lower, c.lower), axis=0) c_upper = np.concatenate((c_upper, c.upper), axis=0) # Create variables bound vectors v_lower = np.array([]) v_upper = np.array([]) if self.nVars: v_lower = -getCoinInfinity() * np.ones(self.nVars) v_upper = getCoinInfinity() * np.ones(self.nVars) for v in self.variables: varinds = self.inds.varIndex[v.name] v_lower[varinds] = v.lower v_upper[varinds] = v.upper #v_lower = np.concatenate((v_lower, v.lower), axis=0) #v_upper = np.concatenate((v_upper, v.upper), axis=0) #if masterCoefMat != None: return masterCoefMat, c_lower, c_upper, v_lower, v_upper
class CyLPSolution: def __init__(self): self.sol = {} def add(self, key, val): 'Add (key, val) to self.dic. Ignore if val is zero' if val == 0: # See if necessary to use a tolerance return self.sol[key] = val def getVal(self, key): 'Return the value corresponing key' if key not in self.sol.keys(): return 0 return self.sol[key] def __getitem__(self, key): #if isinstance(key, tuple): if key in self.sol.keys(): return self.sol[key] else: return 0 def __setitem__(self, key, val): #if isinstance(key, tuple): if val == 0: # See if necessary to use a tolerance return self.sol[key] = val def __repr__(self): return repr(self.sol) def getCoinInfinity(): return 1.79769313486e+308 if __name__ == '__main__': from CyLP.cy import CyClpSimplex from CyLP.py.modeling.CyLPModel import CyLPArray s = CyClpSimplex() x = s.addVariable('x', (5, 3, 6)) s += 2 * x[2, :, 3].sum() + 3 * x[0, 1, :].sum() >= 5 s += 0 <= x <= 1 c = CyLPArray(range(18)) s.objective = c * x[2, :, :] + c * x[0, :, :] s.writeMps('/Users/mehdi/Desktop/test.mps') s.primal() sol = s.primalVariableSolution print sol #model = CyLPModel() # #x = model.addVariable('x', 5) #y = model.addVariable('y', 4) #z = model.addVariable('z', 5) # # #b = CyLPArray([3.1, 4.2]) #aa = np.matrix([[1, 2, 3, 3, 4], [3, 2, 1, 2, 5]]) #aa = np.matrix([[0, 0, 0, -1.5, -1.5], [-3, 0, 0, -2,0 ]]) #dd = np.matrix([[1, 3, 1, 4], [2, 1,3, 5]]) # # #model.addConstraint(1.5 <= x[1:3] + 5 * y[3:] - 6 * x[2:5] + x[0] <= 14) # #print model.constraints[0].varCoefs # #model.addConstraint(2 <= aa*x + dd * y <= b) #model.addConstraint(x[2:4] >= 3) #model.addConstraint(1.1 <= y <= CyLPArray([1,2,3,4])) # # #A = model.makeMatrices() # #print 'x:' #print x.lower #print x.upper #print 'y:' #print y.lower #print y.upper # #print '+++++++++++++++++++++++++++++' ##cc = x[0] - 2*x[1:3] -2.5 * y[1] ##cc = cc.evaluate() #model.objective = x[0] - 2*x[1:3] -2.5 * y[1] ##print model.allParentVarDims ##print model.generateVarObjCoef('x') ##print model.generateVarObjCoef('y') # #print model.objective ##print cl ##print cu